11 research outputs found

    Gene expression profiling and network analysis of peripheral blood monocytes in a chronic model of allergic asthma

    Full text link
    The Aspergillus fumigatus mouse model of asthma mimics the characteristics of human fungal asthma, including local and systemic inflammation. Monocyte/macrophage lineage cells direct innate immune responses and guide adaptive responses. To identify gene expression changes in peripheral blood monocytes in the context of fungal allergy, mice were exposed to systemic and intranasal inoculations of fungal antigen (sensitized), and naïve and sensitized animals were challenged intratracheally with live A. fumigatus conidia. Microarray analysis of blood monocytes from allergic versus non-allergic mice showed ≥ twofold modulation of 45 genes. Ingenuity pathway analysis revealed a network of these genes involved in antigen presentation, inflammation, and immune cell trafficking. These data show that allergen sensitization and challenge affects gene expression in peripheral monocytes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79085/1/j.1348-0421.2010.00242.x.pd

    Eosinophils in fungus-associated allergic pulmonary disease

    Get PDF
    Asthma is frequently caused and/or exacerbated by sensitization to fungal allergens, which are ubiquitous in many indoor and outdoor environments. Severe asthma with fungal sensitization is characterized by airway hyperresponsiveness and bronchial constriction in response to an inhaled allergen that is worsened by environmental exposure to airborne fungi and which leads to a disease course that is often very difficult to treat with standard asthma therapies. As a result of complex interactions among inflammatory cells, structural cells, and the intercellular matrix of the allergic lung, patients with sensitization to fungal allergens may experience a greater degree of airway wall remodeling and progressive, accumulated pulmonary dysfunction as part of the disease sequela. From their development in the bone marrow to their recruitment to the lung via chemokine and cytokine networks, eosinophils form an important component of the inflammatory milieu that is associated with this syndrome. Eosinophils are recognized as complex multi-factorial leukocytes with diverse functions in the context of allergic fungal asthma. In this review, we will consider recent advances in our understanding of the molecular mechanisms that are associated with eosinophil development and migration to the allergic lung in response to fungal inhalation, along with the eosinophil’s function in the immune response to and the immunopathology attributed to fungus-associated allergic pulmonary disease

    Messenger RNA Gene Expression Screening of VIP and PACAP Neuropeptides and Their Endogenous Receptors in Ruminants

    No full text
    Vasoactive Intestinal Peptide (VIP) and Pituitary Adenylate-Cyclase-Activating Peptide (PACAP) are anti-inflammatory neuropeptides that play important roles in human and rodent gut microbiota homeostasis and host immunity. Pharmacologically regulating these neuropeptides is expected to have significant health and feed efficiency benefits for agriculturally relevant animals. However, their expression profile in ruminant tissues is not well characterized. To this end, we screened for VIP and PACAP neuropeptides and their endogenous GPCRs using 15 different tissues from wethers and steers by RT-qPCR. Our results revealed relatively similar expression profiles for both VIP and PACAP neuropeptide ligands in the brain and intestinal tissue of both species. In contrast, the tissue expression profiles for VPAC1, VPAC2, and PAC1 were more widespread and disparate, with VPAC1 being the most diversely expressed receptor with mRNA detection in the brain and throughout the gastrointestinal tract. These data are an important first step to allow for future investigations regarding the VIP and PACAP signaling pathways in livestock ruminant species
    corecore